

✓ **The COMMUNITY DEVELOPMENT COMMITTEE held a Meeting on
MONDAY, JANUARY 12th, 2026 beginning at 6:00 P.M. circulated 2/2/26**

COM DEV PRESENT: Chair Schneider, Mitchell, Lipian, Rothgery, Doehne

FINANCE PRESENT: Chair Tollett, Cerra, Schneider, Davis, Van Wormer

OTHERS PRESENT: Armstrong, Stewart

EXCUSED ABSENCE:

OTHERS PRESENT: Law Dir Deery, Safety Svc Dir Pyanowski, Mayor Brubaker, Finance Dir Pileski, Fin Dir Farrell, Planner Schoenig, Engineer Schneider, Fire Chief Pronesti, Public Works Supt Conner, HR Dir Yousefi, Reclamation Supt Stewart

1 on

Joint Agenda

1. The matter of approval of meeting minutes from the Community Development Committee Meetings from: Nov. 24th, 2025 as circulated on Nov. 25th, 2025.

Motion made by Mrs. Mitchell and seconded by Mr. Lipian to approve the 'said' meeting minutes as circulated.

MOTION CARRIES

2. The matter of a lot consolidation and lot split and approval of sanitary sewer easement for 649 S. Abbe Road.

Referred By: South Abbe Road Plaza, LLC

[This matter was approved by Planning Commission on 12/09/2025]

The applicant, Bob Yost, 260 S Logan. The existing nine lots were approved by Planning Commission. They face north south and they turned then to go east west on Abbe Road to create three individual lots. There is an empty lot, Marcos restaurant and then plaza is a separate lot. They are going before PC again tomorrow to ask for a variance on one of the side yard setbacks. This was done in 1988 under the Jerry Klein era and the side yard was 2 feet and today calls for it to be 5 feet, so they will request a variance for that tomorrow.

Law Dir Deery said she did confirm with the Engineer's Office that everything is in order, as far as the proposed easements for utilities and there are no issues with that.

There were no questions and no discussion on this matter and Chair Schneider read the committee report and asked for a motion.

Motion was made by Mrs. Mitchell and second by Mr. Lipian authorizing an ordinance for the 'said' request.

MOTION CARRIES COMMITTEE REPORT WRITTEN

3. The matter of a presentation by James Golden of Pavement Management Group to discuss the Street Scanning Project.

Referred By: Director Pyanowski

Dir Pyanowski said that James Golden will join the meeting on the screen via zoom to go over a presentation with us this evening. The company is called PMG Pavement Management Group and that is the company that we have contracted with last year for them to do the first street scan for this year's resurfacing projects. They have completed the process and provided with a dashboard and some of the initial documentation showing how the process was completed along with the results of that and scoring of the different streets. Mr. Golden will present this report along with some additional information with budgeting and other processes that we could undertake in order to maintain our current scoring or to improve our scoring or different approaches we could take using this information as we consider which streets to pave and how to budget it appropriately.

James Golden introduced himself, CEO and founder of Pavement Management Group. They are a professional services, consulting and data analytics company located in central Ohio. Technology has evolved over the last 28 years. This company was founded in 2011 and was branded to Pavement Management Group in 2017. They are happy to be working with Elyria as well as many communities throughout the nation.

This evening he will walk through the final results and findings of the pavement management study and discuss the next steps. They are the consultants for the next year and a half. This report was completed in November 2025. That report is attached to these Meeting Minutes and will be referred to as 'Exhibit A'.

This presentation will begin with an executive summary and Mr. Golden will walk through the scope and the process. The backbone of the program is the software and tools that PMG has expertise in. Their first goal and objective are to provide a full inventory of all the roadways in the city. That's the foundation and next steps would be project planning and alternative treatments and solutions. The inventory is going through all of the roadways and breaking them down into logical pavement sections which is typically intersection to intersection and they document the length, width, the area, surface type, functional classification and ward. Then they will drive the full network and capture high definition video, the scanning process. That video serves well for all the internal needs. After the video they begin the condition assessment phase. They will recognize the distresses which are AM standard which is the American Society of Tools and Materials and a scientific methodology of how they arrive at the PCI (Pavement Condition Index) scores. Those distresses are documented and that is what drives the score. Next is road insights, which is the data driven, map-driven, web-based solution to be able to visualize for communication tools and view through the lens of high-definition video and becomes GIS, geographic information systems. After that they get into the final deliverables, the reports, an excel spreadsheet which allows to organize the information and data with each street name from top to bottom and inventory and condition data and then the final report and executive summary and the quick hit findings.

The city is responsible for 222 centerline miles of roadway, 482 2-lane miles, 33 million square feet of pavement surface area. That equates to 287 pavement sections. Then they start with the network level analysis and the average PCI (pavement condition index) is a 68 on a scale of 0 – 100 and that places it into a fair condition category. Among the state of Ohio, Elyria is actually a little above average. Pavement Management Group (PNG) has developed their own proprietary technology for pulling out distresses and leveraging artificial intelligence and was developed in house by PNG thru years of experience. They value the benefit of quality assurance, including quality control.

There are many different distresses that can occur on asphalt and concrete pavements. There are up to 20 different distresses that can occur within these roadways. Each can be climate related or base related or load associated, alligator cracking, potholes, longitudinal and transverse cracking. They will document which of these distresses is occurring within each road segment. They look for severity levels of the distresses and measuring the quantity of the distress that is happening to produce the condition for each segment. They can see low PCI values and high PCI values that establish the condition categories. The PCI for a failed roadway, the score would be between 0 and 29, poor between 30 to 49, fair 50 to 69, good 70 to 89 and excellent 90 to 100. They will give transparency and a good visual on their reports.

Next is the overall analysis. They have the ability to break down the 222 miles by the percentage of area in each category which is called a performance indicator. The data can indemnify where they should be allocating dollars. About 19% of the total area is in excellent condition and the failed category is 5%. The good category is about 30% and fair and poor makes up about 47%.

This can also be looked at through the lens of the surface types. Concrete roadways deteriorate differently than asphalt. They also require different maintenance and repair activities. Asphalt roadways dominate the network, at about 76% asphalt and about 24% concrete.

They were able to document the roadways that belong to each ward. There are 2 key indicators; percentage of area for each ward and there is an even distribution. Ward 2 represents about 21% while Ward 3 is the lowest at about 10%. The diagram also shows the current average condition of each ward. This is another key performance indicator to overall condition of where they can look to shift budgetary needs based on the ward, the surface and current condition.

The final report concludes with the overall results and talk about the next steps.

Chair Schneider thanked Mr. Golden and opened up for questions or comments.

Mrs. Mitchell said this is great that we can actually look at the streets in our wards and the city as a whole is not that bad. This is a great tool but, she recommends everyone to continue to look at the streets in their wards and to continue to work with engineering. This complements all of that.

Chair Schneider agrees with Mrs. Mitchell and said this is a testament to our residents to be able to fund to keep the roads in good condition.

Dir Pyanowski reminded everyone that this product dashboard also includes videos of all the scanning they did in late September and early October.

That is a feature that you have to get to. He offered to help show anyone how to get to that part of the program.

Mr. Armstrong said the rank of the city is 68 which is fair, but, his concern is Ward 1 at 64 and Ward 4 is at 63 and these two wards in their failed section alone, Ward 4 has 12 miles that really needs to be looked at. Ward 1 has 9.7 miles to be looked at. This is a great tool. He has been getting maps from engineering which has been helpful. This is good to give the citizens what they want, and that's better roadways.

Mrs. Mitchell wants to thank the residents for continuing to support the 2016 ½% income tax, without that, we couldn't do anywhere near the number of streets that we have been doing since that passed.

Engineer Schneider agrees this is a great tool and it's unbiased. It compares each asphalt road the same and each concrete road the same. It gives a bigger degree of a number of a number to rank it. He encourages everyone to use it.

Mrs. Davis noticed that a few streets that are taken care of by the residents are listed as some to the bad streets. She likes that the maps show the streets and the conditions and those bad streets will be her top priority when she does her ride-a-long.

Mr. Lipian said this is about making data driven decisions. He asked, once a street gets paved, how long does it take an asphalt road to start alligator cracking to a fair to poor level? And what is one of the biggest causes for alligator cracking?

Mr. Golden said if there are roadways that are already at fair to poor and you mill the street and don't do any base type of work and put the 2 inches of asphalt right back on top of it, you will start to see reflective cracking in that roadway within 3 to 5 years. The alligator cracking will start coming back, but it won't look to that effect until after 12 to 15 years, which would be the lifespan. That is a part of the data driven actionable results.

Mr. Golden went on to say some of the next action items along with your feedback is now taking a look at this a little further. Looking at an actual annual budget where you can prioritize roadways. If you're spending x amount of dollars each year following processes in each ward. What is the expectation to get the roads to in each ward to? If you do a complete reconstruction of a road by tearing it out and replace with a brand-new roadway and follow engineering specifications, that will last longer. But, when you do the milling overlaying on the poor and failing street, they like to see the right type of base repairs being put in place. The data shows where those locations exist. That's how to maximize the budget that you are working with while extending the life of the roadways as long as possible.

Chair Schneider asked about the streets that go through multiple jurisdictions, county or township, is that road scored as the entire road or just the sections that are in the city?

Dir Pyanowski said they gave PMG the GIS files that show which streets are in the City. and they should score those sections of those streets.

If a county section got included, they could exclude that during the evaluation.

That concluded the presentation by Mr. Golden and he thanked the committee for the opportunity to work with the city and he hopes we use this data and they are always there for assistance.

Mr. Oswald feels that we need to get on a really aggressive crack filling program that we do consistently to the point where the roads don't get to that poor rating. The water and moisture that gets into the alligator cracks during the winter and freezes and then it pops and when we didn't think it was that bad, but now it's destroyed and the whole road could need to be replaced.

Dir Pyanowski agrees with Mr. Oswald, that's why the City bought a crack sealing machine and created a crack sealing team last year. The team didn't get started until late May last year because of training and transition, but this year they will start earlier. He said they will need to identify those streets that have cracking so they can get to them earlier. The report that everyone has was part of the dashboard. The crack sealing team is documenting the streets and tracking the work they're doing. Once those cracks are sealed and the job is finished we will report it to PMG and they can upload it into the program of the work that has been done.

Mrs. Mitchell asked everyone to start looking at the data and the streets and once we find out how much money we have for streets, we can move forward. We want to start early this year so they can bid out early and hopefully get better prices.

Chair Schneider said he impressed within the wards in the city overall. Some wards have newer infrastructure so the value is higher, this is very good information. And he thanked Mr. Golden from PMG.

Thank concluded the agenda for Community Development and Chair Schneider asked for a motion to adjourn Community Development.

Chair Schneider said there is nothing more to come before The Community Development Committee and he asked for a motion to adjourn this portion of this evening's Committee Meetings.

**Motion was made by Mr. Lipian and seconded by Mrs. Mitchell to adjourn the Community Development portion of this evening's meetings at 6:45 P.M.
MOTION CARRIED**

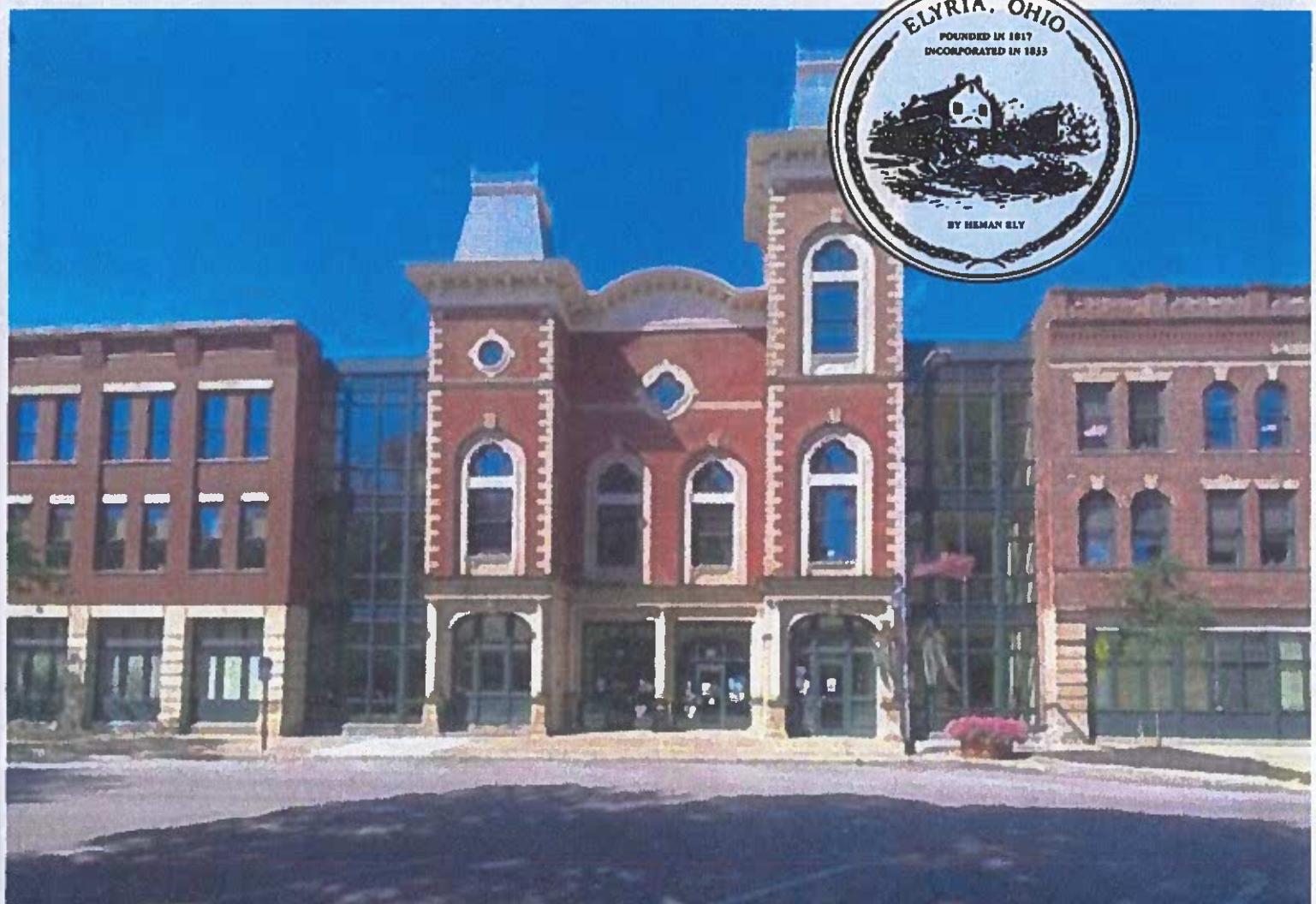
And the evening's meeting will continue Finance Committee.

The next Community Development Committee Meeting is scheduled for Monday, February 9th, 2026 at 6:00 P.M.

Respectfully submitted by, Colleen Rosado,
Council Clerk Secretary/Administrative Assistant

"EXHIBIT A"

655 Hopewell Dr
PO Box 2407
Heath, OH 43056
(800) 638-8040



PAVEMENT MANAGEMENT FINAL PROJECT REPORT

Elyria, OH

Monday, November 17, 2025

Pavement Management Group

COMPLETE PAVEMENT MANAGEMENT SOLUTIONS

TABLE OF CONTENTS

EXECUTIVE SUMMARY.....	2
2025 ROADWAY NETWORK SUMMARY.....	2
INTRODUCTION	2
CONDITION ASSESSMENT PROCESS	3
PAVEMENT DISTRESS DEFINITION.....	3
PCI AND CONDITION CATEGORY DEFINITION	4
EXAMPLES OF ROADWAY CONDITIONS	5
EXCELLENT CONDITION	5
GOOD CONDITION.....	6
FAIR CONDITION.....	6
POOR CONDITION.....	7
FAILED CONDITION.....	7
ROADWAY CONDITION RESULTS.....	8
CONDITION GRAPHS.....	8
SURFACE TYPE GRAPHS	9
WARD GRAPHS	10
GIS CONDITION MAP	11
CONCLUSION	12

EXECUTIVE SUMMARY

The City of Elyria contracted with Pavement Management Group (PMG) to provide a turn-key Pavement Management Program (PMP). The backbone of PMG's turnkey PMP is the PAVER Pavement Management System (PMS), which provides specific tools such as pavement modeling, maintenance decision trees, and budget/target-driven scenarios, maximizing the return on investment from available maintenance and rehabilitation funds, generating a prioritized plan, and identifying specific areas in need of maintenance and rehabilitation.

- Verify and setup any new pavement network inventory
- Provide an HD video of each pavement section
- Identify all distress types, severity levels, and quantities through ASTM D6433-23
- Calculate the Pavement Condition Index (PCI) for each pavement section
- Assign all pavement management data to GIS
- Create a GIS current condition map
- Provide a complete inventory and condition listing of each pavement section
- Provide a final report of findings
- Provide our RoadINsights Dashboard of the network through ArcGIS
- Provide continued support services

2025 ROADWAY NETWORK SUMMARY

ROADWAY INVENTORY SUMMARY	
TOTAL SECTIONS	2,087
TOTAL PAVEMENT AREA	33,079,946
TOTAL CENTERLINE MILES	222
TOTAL LANE MILES	482

ROADWAY CONDITION SUMMARY	
AVERAGE PCI	68
AVERAGE CONDITION	FAIR

INTRODUCTION

The City of Elyria contracted PMG to provide pavement management services for their 222-centerline mile (482 lane mile) roadway network. These services included a field inventory setup of any new roadway sections, an inventory review, and inspections on all 2,087 pavement management sections within the network. All inventory items were added or updated within their PMS database, and a PCI was calculated for each section. HD videos were taken at each section location (from the beginning to the end of the section). This provides for a virtual, high-definition account of the roadway network and provides value in various ways, such as condition review and network-level decision-making from the office. This report provides a thorough definition of the inspection process performed as well as the condition results of our project.

CONDITION ASSESSMENT PROCESS

PMG adheres to the ASTM D6433-23 standard for assessing the condition of asphalt and concrete surfaces. Our skilled inspection team reviews high-definition video of each pavement section with our proprietary artificial intelligence (AI) model to identify and document the distress types, severity levels, and quantities occurring. The data goes into the PAVER™ Pavement Management System (PMS) for Pavement Condition Index (PCI) calculation, resulting in a PCI score for each management section within the network.

PAVEMENT DISTRESS DEFINITION

20 possible distress types can occur within asphalt-based surfaces, and 19 possible ones within a concrete surface. The U.S. Army Corps of Engineers publishes the Asphalt and Concrete Distress Manual. These manuals describe each distress type, the criteria to determine each severity level (low, medium, high), and how to measure each. The asphalt and concrete distress types are highlighted below in Figure 1.

01 – Alligator Cracking	06 – Depression	11 – Patch/Utility Cut	16 – Shoving
02 – Bleeding	07 – Edge Cracking	12 – Polished Aggregate	17 – Slippage Cracking
03 – Block Cracking	08 – Joint Reflection	13 – Pothole	18 – Swell
04 – Bumps and Sags	09 – Lane/Shoulder Drop	14 – Railroad Crossing	19 – Raveling
05 – Corrugation	10 – L&T Cracking	15 – Rutting	20 – Weathering
21 – Blow Up/Buckling	26 – Joint Seal Damage	31 – Polished Aggregate	36 – Scaling
22 – Corner Break	27 – Lane/Shoulder Drop	32 – Popouts	37 – Shrinkage Cracks
23 – Divided Slab	28 – Linear Cracking	33 – Pumping	38 – Corner Spalling
24 – Durability Cracking	29 – Large Patch/Utility Cut	34 – Punchout	39 – Joint Spalling
25 – Faulting	30 – Small Patch	35 – Railroad Crossing	

Figure 1. Asphalt and Concrete Distresses

PCI AND CONDITION CATEGORY DEFINITION

The PCI is on a scale of 0 to 100, with 0 being the worst and 100 being the best. PAVER™ calculates it by inputting distress type, severity, and quantity information. Figure 2 illustrates the factors that go into the PCI and its' 5 condition categories.

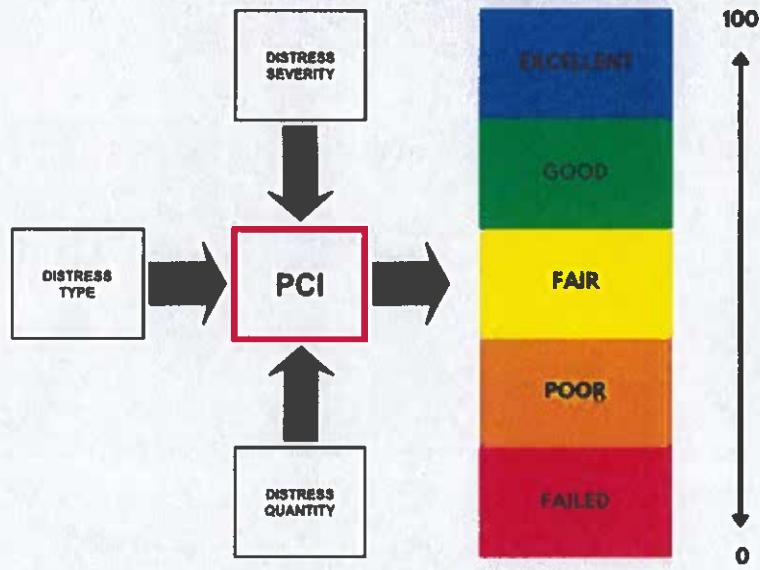
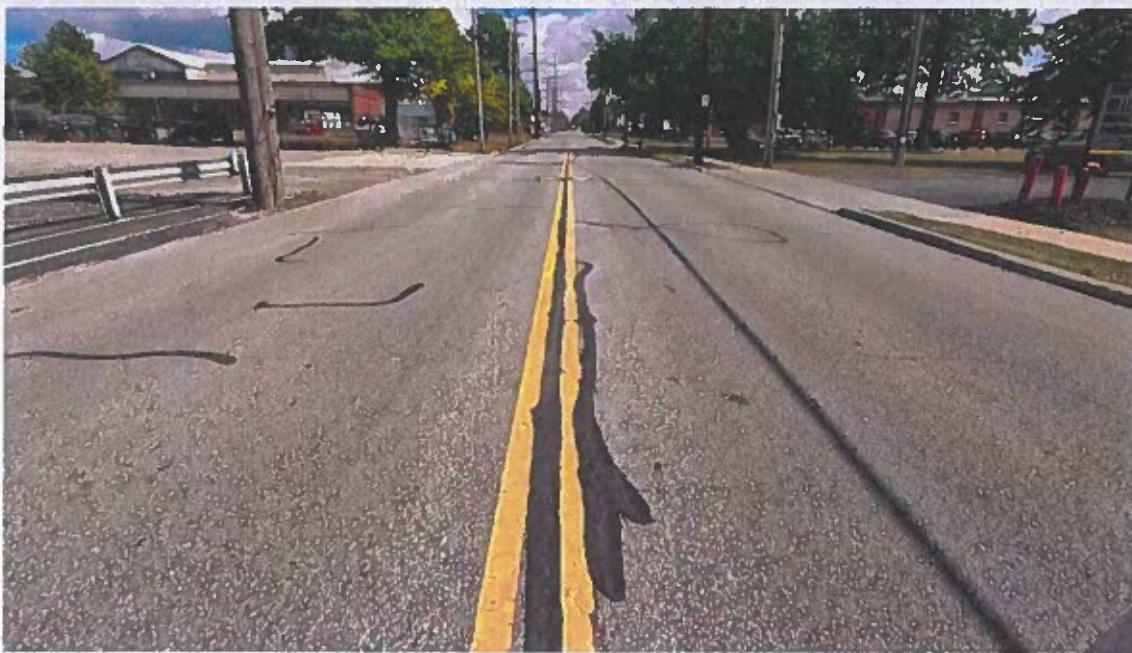


Figure. 2 Factors Determining PCI Value

CONDITION CATEGORY	LOW PCI VALUE	HIGH PCI VALUE
EXCELLENT	90	100
GOOD	70	89
FAIR	50	69
POOR	30	49
FAILED	0	29

Table 1. Condition Category Values

EXAMPLES OF ROADWAY CONDITIONS


A high-resolution video was captured for each management section during the inspection process. A snapshot from several videos has been chosen to provide documentation for this report of the inspected section location and serves as visual identification as to what types of distress are occurring within the pavement section. The following 2025 images of pavements from within the Roadway Network provide a sense of what various PCI levels look like:

EXCELLENT CONDITION

EAST RIVER ST | SECTION 16 | PCI 100

GOOD CONDITION

TAYLOR ST | SECTION 04 | PCI 78

FAIR CONDITION

2ND ST | SECTION 01 | PCI 57

POOR CONDITION

MOUNT VERNON CT | SECTION 02 | PCI 40

FAILED CONDITION

SYCAMORE ST | SECTION 04 | PCI 7

ROADWAY CONDITION RESULTS

After completing the 2025 pavement management project, PMG has determined that the average PCI for Elyria's 482-lane-mile (222 Centerline Mile) roadway network is a **68** and is classified as in **FAIR** condition. Table 2 displays the condition summary data by category across the network, while Figures 3, 4, and 5 illustrate the conditions in graph form. A complete Inventory and Condition Report in an Excel spreadsheet was provided for this project deliverable.

CONDITION CATEGORY	SECTIONS	CENTERLINE MILES	LANE MILES	PAVEMENT AREA (SF)	PERCENT AREA	AVERAGE PCI
EXCELLENT	459	44.76	93.49	6,416,850	19.40%	95
GOOD	603	63.60	147.49	10,123,429	30.60%	80
FAIR	519	60.69	141.04	9,681,276	29.27%	60
POOR	403	41.48	79.56	5,461,209	16.51%	40
FAILED	103	11.88	20.36	1,397,182	4.22%	22
TOTALS	2,087	222	482	33,079,946	100%	

Table 2. Condition Summary

CONDITION GRAPHS

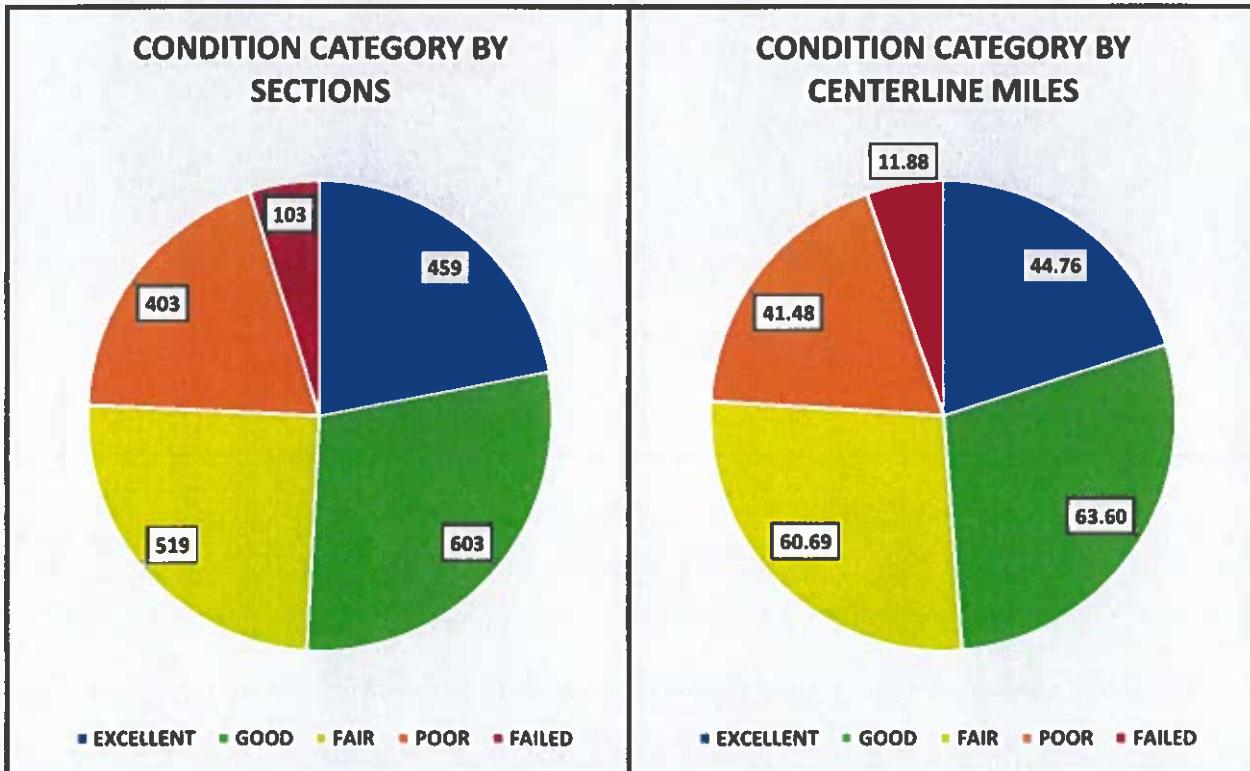


Figure 3. Condition Category by Number of Sections and Centerline Miles

SURFACE TYPE GRAPHS

SURFACE TYPE	SECTIONS	CENTERLINE MILES	LANE MILES	PAVEMENT AREA (SF)	PERCENT AREA	AVERAGE PCI
ASPHALT	1,556	168.66	363.89	24,977,539	75.51%	64
CONCRETE	511	52.43	116.19	7,975,055	24.11%	77
GRAVEL	13	0.75	0.88	60,243	0.18%	67
BRICK	7	0.55	0.98	67,109	0.20%	63
TOTALS	2,087	222	482	33,079,946	100%	

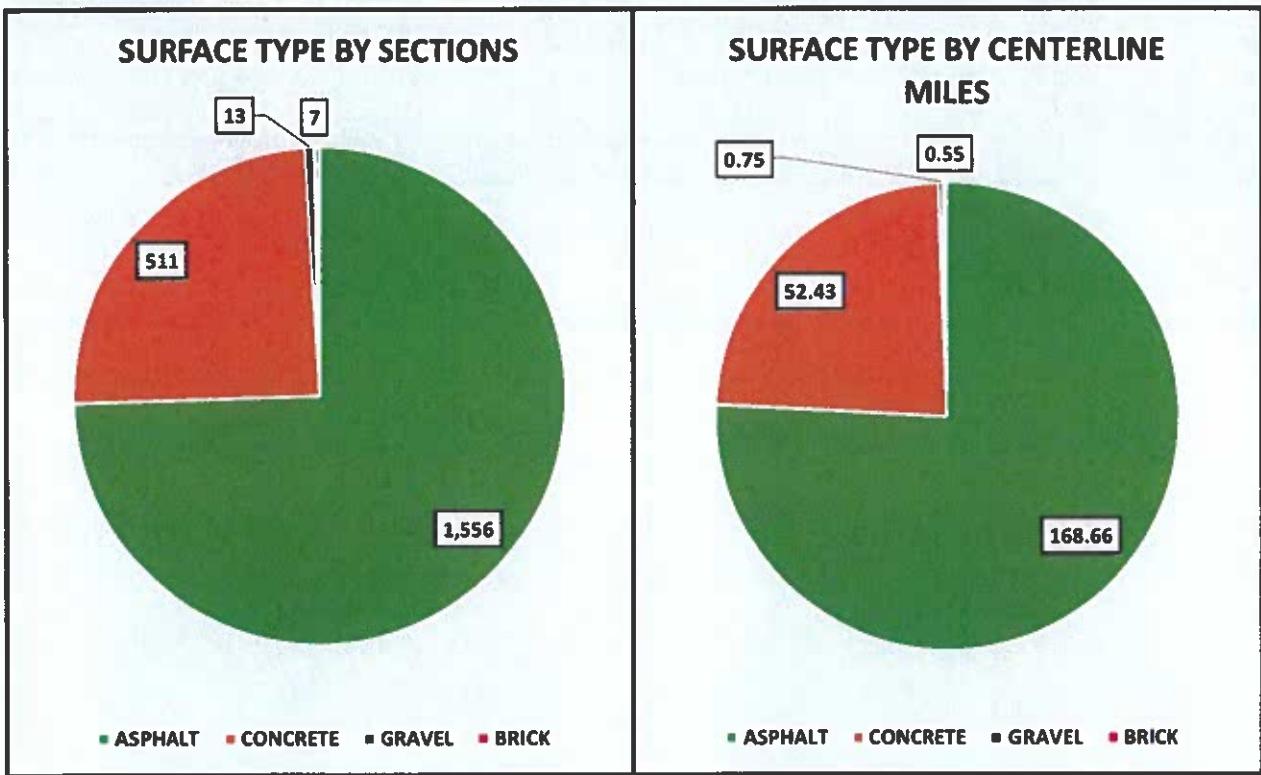


Figure 4. Surface Type by Number of Sections and Centerline Miles

2025 PAVEMENT MANAGEMENT FINAL PROJECT REPORT

WARD GRAPHS

WARD	SECTIONS	CENTERLINE MILES	LANE MILES	PAVEMENT AREA (\$F)	PERCENT AREA	AVERAGE PCI
1	308	34.08	74.06	5,083,556	15.37%	64
2	409	44.13	101.24	6,949,453	21.01%	66
3	229	22.02	46.54	3,194,593	9.66%	77
4	300	35.64	75.79	5,202,051	15.73%	63
5	297	24.74	51.48	3,533,864	10.68%	70
6	288	31.13	62.35	4,279,491	12.94%	69
7	256	30.65	70.47	4,836,938	14.62%	67
TOTALS	2,087	222	482	33,079,946	100%	

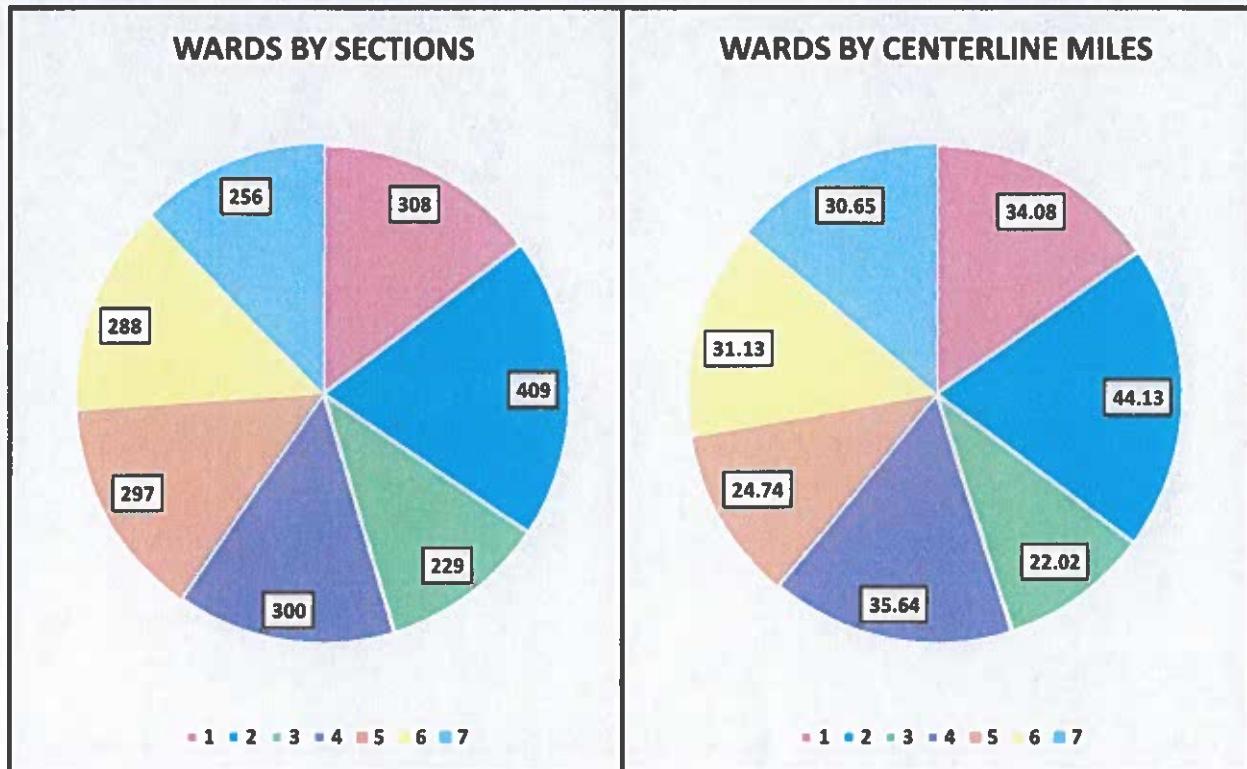


Figure 5. Ward by Number of Sections and Centerline Miles

GIS CONDITION MAP

PMG assigned all pavement management data to GIS and will provide the shapefile to the agency. This allows for various mapping options within ESRI's ArcGIS and Google Earth. The following shows an example of the Latest Condition Map created in GIS and Google Earth for illustrative purposes. An ANCI Size C plot-ready PDF version has been provided as part of the project deliverables.

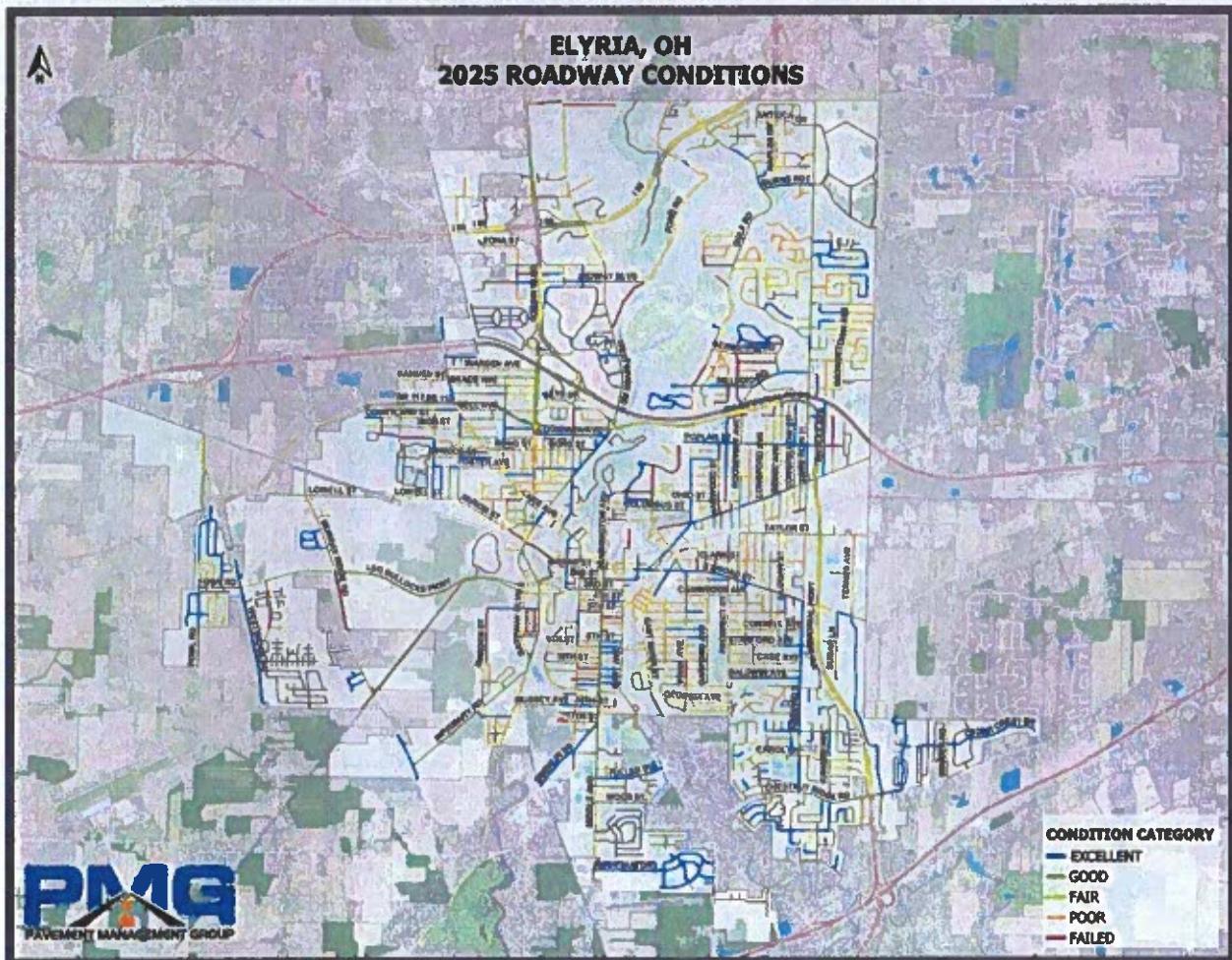
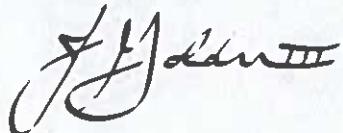


Figure 6. Roadway Conditions Map

2025 PAVEMENT MANAGEMENT FINAL PROJECT REPORT

CONCLUSION

The PCI study provides a PCI rating for each pavement section within the maintained roadway network. A PCI number is assigned to each pavement section based on the distresses identified within each section. This number is on a scale of 0 to 100, with 0 being the worst and 100 being the best.


The City of Elyria Roadway network is approximately 482 lane miles (222 centerline miles) in size. Through the ASTM D6433-23 PCI study, PMG has determined that the roadway network has an average PCI of a **68** and is classified as being in **FAIR** condition.

PMG would again like to thank you for the opportunity to provide the City of Elyria with this PCI study and our pavement management services. Our goal is to provide the highest level of services and support, providing our clients with the data, tools, and expertise necessary to succeed in their pavement management goals. Please do not hesitate to ask if you require additional information or support regarding this PCI study or the PAVER™ PMS.

PAVEMENT MANAGEMENT GROUP

JAMES GOLDEN III

Founder/CEO

P: (740) 507-3842

E: James@PavementManagementGroup.com

